Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
描述:即判断一棵树是不是二叉搜索树(左孩子小于父节点值,右孩子大于父亲节点值,且其左子树和右子树也同时满足BST)
思路:双层递归。
第一层,递归每一个节点是否满足,左边所有节点都小于它,右边所有节点都大于它。
第二层,如何来实现判断,左边所有节点都小于根,右边所有节点大于根。(每个节点都要作为根)。
特殊:root为空时,return true
代码:
class Solution {public: bool isLeftValid(TreeNode *root,int val){//某个根的左树,val该根的值 if(root==NULL) return true; return root->valleft,val)&&isLeftValid(root->right,val); } bool isRightValid(TreeNode *root,int val){//某个根的右树,val该根的值 if(root==NULL) return true; return root->val>val&&isRightValid(root->left,val)&&isRightValid(root->right,val); } bool isValidBST(TreeNode *root) { if(root==NULL) return true; bool flag=isLeftValid(root->left,root->val)&&isRightValid(root->right,root->val); if(!flag) return false; return isValidBST(root->left)&&isValidBST(root->right); }};